Papers

  1. M. Mukai, T. Kobayashi, M. Sato, J. Asada, K. Ueno, T. Furukawa, S. Maruo ,“Bubble Printing of Liquid Metal Colloidal Particles for Conductive Patterns”, Nanomaterials, 14(20), 1665(2024).
  2. H. Miyajima, K. Kojima, H. Touji, K. Onodera, M. Mukai, S. Maruo, K. Iijima,“Microfabrication of Gelatin Methacrylate/Hydroxyapatite Composites by Utilizing Alternate Soaking Process”, ACS Biomaterials Science & Engineering (2023).
  3. M. Aoki, R. Yokota, S. Maruo, T. Kageyama, J. Fukuda, “Cryopreservation of engineered hair follicle germs for hair regenerative medicine”, Journal of Bioscience and Bioengineering,136(3), 246-252(2023).
  4. M. Mukai, M. Sato, W. Miyadai, S. Maruo, “On-Demand Tunability of Microphase Separation Structure of 3D Printing Material by Reversible Addition/Fragmentation Chain Transfer Polymerization”, Polymers, 15(17), 3519(2023).
  5. B. Z. Molino, C. O’Connell, T. Kageyama, L. Yan, Y. Wu, I. Kawamura, S. Maruo, J. Fukuda,“Gelatin acrylamide with improved UV crosslinking and mechanical properties for 3D biofabrication”, Journal of Bioscience and Bioengineering,136(1), 51-57(2023).
  6. M. Takenouchi, M. Mukai, T. Furukawa, S. Maruo,“Fabrication of Flexible Wiring with Intrinsically Conducting Polymers Using Blue-Laser Microstereolithography”, Polymers. 2022, 14(22), 4949(2022).
  7. T. Maruyama, M. Mukai, R. Sato, M. Iijima, M. Sato, T. Furukawa, S. Maruo,“Multifunctional 3D Printing of Heterogeneous Polymer Structures by Laser-Scanning Micro-Stereolithography Using Reversible Addition–Fragmentation Chain-Transfer Polymerization”, ACS Appl. Polym. Mater. 2022, 4(8), 5515−5523(2022).
  8. M. Iijima, R. Arita, Y. Fujishiro, T. Furukawa, S. Maruo, J. Tatami, “Effects of suspension processing conditions on the multi-scale structural changes of photocured SiO2 bodies during sintering process: An operando observation using optical coherence tomography ”, Advanced Powder Technology, 33(4), 103533 (2022).
  9. Y. Moritoki, T. Furukawa , J. Sun , M. Yokoyama , T. Shimono , T. Yamada , S. Nishiwaki , T. Kageyama , J. Fukuda , M. Mukai and S. Maruo , “3D-Printed Micro-Tweezers with a Compliant Mechanism Designed Using Topology Optimization”,Micromachines ,12(5),579(2021)
  10. S. Morita, M. Iijima, Y. Chen, T. Furukawa, J. Tatami, S. Maruo, “3D structuring of dense alumina ceramics using fiber-based stereolithography with interparticle photo-cross-linkable slurry”, Advanced Powder Technology, 32(1), 72-79 (2021).
  11. Y. Chen, T. Furukawa, T. Ibi, Y. Noda, and S. Maruo, “Multi-scale micro-stereolithography using optical fibers with a photocurable ceramic slurry”, Optical Materials Express, 11(1), 105-114 (2021).
  12. T. Maruyama, H. Hirata, T. Furukawa, and S. Maruo, “Multi-material microstereolithography using a palette with multicolor photocurable resins”, Optical Materials Express, 10(10), 2522-2532 (2020).
  13. M. Sairaiji, H. Yoshizaki, H. Iwaoka, S. Hirosawa and S. Maruo, “Effect of Scan Strategy on Mechanical Properties of AlSi12 Lattice Fabricated by Selective Laser Melting”, JLMN-Journal of Laser Micro/Nanoengineering , 15(1), 7-11 (2020).
  14. R. Arita, M. Iijima, Y. Fujishiro, S. Morita, T. Furukawa, J. Tatami and S. Maruo, “Rapid three-dimensional structuring of transparent SiO2 glass using interparticle photo-cross-linkable suspensions”, Communications Materials, 1, 30 (2020).
  15. Y. Fujishiro, T. Furukawa, and S. Maruo, “Simple autofocusing method by image processing using transmission images for large-scale two-photon lithography”, Optics Express 28(8), 12342-12351 (2020).
  16. T. Komori, T. Furukawa, M. Iijima, and S. Maruo, “Multi-scale laser direct writing of conductive metal microstructures using a 405-nm blue laser”, Optics Express 28(6), 8363-8370 (2020).
  17. S. Kozaki, Y. Moritoki, T. Furukawa, H. Akieda, T. Kageyama, J. Fukuda, S. Maruo, “Additive Manufacturing of Micromanipulator Mounted on a Glass Capillary for Biological Applications”, Micromachines , 11, 174 (2020).
  18. T. Kozaki, S. Saito, Y. Otsuki, R. Matsuda, Y. Isoda, T. Endo, F. Nakamura, T. Araki, T. Furukawa, S. Maruo, M. Watanabe, K. Ueno, H. Ota, “Liquid‐State Optoelectronics Using Liquid Metal,” Advanced Electronic Materials 1901135 (2020).
  19. D. Tachibana, K. Matsubara, R. Matsuda, T. Furukawa, S. Maruo, Y. Tanaka, O. Fuchiwaki, and H. Ota, “3D Helical Micromixer Fabricated by Micro Lost-Wax Casting,” Advanced Materials Technologies 1900794 (2019).
  20. Y. Kobayashi, C. E. J. Cordonier, Y. Noda, F. Nagase, J. Enomoto, T. Kageyama, H. Honma, S. Maruo & J. Fukuda, Tailored cell sheet engineering using microstereolithography and electrochemical cell transfer,” Scientific Reports 9, 10415 (2019).
  21. T. Kageyama, L. Yan, A. Shimizu, S. Maruo, J. Fukuda, “Preparation of hair beads and hair follicle germs for regenerative medicine”, Biomaterials Vol.212 (2019).
  22. T. Ibi, E. Komada, T. Furukawa, S. Maruo, “Multi-scale, multi-depth lithography using optical fibers for microfluidic applications,” Microfluidics and Nanofluidics 22, Iss. 69(2018).
  23. K. Koyama, M. Takakura, T. Furukawa, and S. Maruo, “3D Shape Reconstruction of 3D Printed Transparent Microscopic Objects from Multiple Photographic Images Using Ultraviolet Illumination,” Micromachines 9, No. 6, 261 (2018).
  24. T. Kageyama, C. Yoshimura, D. Myasnikova, K. Kataoka, T. Nittami, S. Maruo, and J. Fukuda, “Spontaneous hair follicle germ (HFG) formation in vitro, enabling the large-scale production of HFGs for regenerative medicine,” Biomaterials 154, 291-300 (2018).
  25. K. Kakegawa, R. Harigane, M. Aida, H. Miyahara, S. Maruo, A. Okino, “Development of a High-Density Microplasma Emission Source for a Micro Total Analysis System,” Analytical Sciences 33, No. 4, 505-510 (2017).
  26. T. Zandrini, S. Taniguchi, S. Maruo, “Magnetically driven micromachines created by two-photon microfabrication and selective electroless magnetite-plating for lab-on-a-chip applications,” Micromachines 8, No. 2, Article No. 35 (pp. 1-8) (2016).
  27. K. Monri and S. Maruo, “Three-dimensional ceramic molding based on microstereolithography for the production of piezoelectric energy harvesters,” Sensors and Actuators A 200, 31–36 (2013).
  28. Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo, “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding,” Opt. Mater. Express, 3, Iss. 6, 875–883 (2013).
  29. T. Ikegami, R. Ozawa, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Development of optically-driven metallic microrotors using two-photon microfabrication,” Journal of Laser Micro / Nanoengineering, 8, no. 1, 6-10 (2013).
  30. T. Ikegami, M. P. Stocker, K. Monaco, J. T. Fourkas, and S. Maruo, “Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating,” Jpn. J. Appl. Phys. 51, no. 6, 06FL17 (2012).
  31. T. Torii, M. Inada, and S. Maruo, “Three-Dimensional Molding based on Microstereolithography Using Beta-Tricalcium Phosphate Slurry for the Production of Bioceramic Scaffolds,” Jpn. J. Appl. Phys. 50, no. 6, 06GL15 (2011).
  32. S. Murakami, M. Ikegame, K. Okamori, and S. Maruo, “Evanescent-Wave-Driven Microrotors Produced by Two-Photon Microfabrication,” Jpn. J. Appl. Phys. 50, 06GM16 (2011).
  33. K. Mukai, S. Kitayama, Y. Kawajiri, and S. Maruo, “Micromolding for three-dimensional metal microstructures using stereolithography of photopolymerized resin,” Microelectronic Engineering 86, 1169-1172 (2009).
  34. S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures,” Optics Express 17, Iss. 23, 20945–20951 (2009).
  35. S. Maruo, A. Takaura, and Y. Saito, “Optically driven micropump with a twin spiral microrotor,” Optics Express 17, Iss. 21, 18525–18532 (2009).
  36. M. Inada, D. Hiratsuka, J. Tatami and S. Maruo, “Fabrication of Three-Dimensional Transparent SiO2 Microstructures by Microstereolithographic Molding,” Jpn. J. Appl. Phys. 48, no. 6, 06FK01 (2009).
  37. S. Maruo, T. Hasegawa and N. Yoshimura “Replication of Three-Dimensional Rotary Micromechanism by Membrane-Assisted Transfer Molding,” Jpn. J. Appl. Phys. 48, no. 6, 06FH05 (2009).
  38. S. Saito, Y. Katoh, H. Kokubo, M. Watanabe, and S. Maruo,”Development of a soft actuator using a photocurable ionic gel,” J. Micromech. Microeng. 19, 035005 (2009).
  39. K. Mukai, S. Kitayama, T. Yoshimura and S. Maruo, “Ferrite and copper electroless plating of photopolymerized resin for micromolding of three-dimensional structures,” Jpn. J. of Appl. Phys. 47, no. 4, 3232-3235 (2008).
  40. K. Mukai, S. Kitayama, S. Maruo, “Electroless and electrolytic plating of Ni, Cu, and CoxFe2-xO4 for the application of three-dimensional micro-molding,” Journal of photopolymer science and technology 21, no. 1, 53-58 (2008).
  41. S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Optics Express 16, Issue 2, 1174-1179 (2008).
  42. S. Maruo and Y. Hiratsuka, “Optically driven micromanipulators with rotating arms,” Journal of Robotics and Mechatronics,19, no. 5, 565-568 (2007).
  43. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91, no. 8, Art No. 084101 (2007).
  44. K. Mukai, T. Yoshimura, S. Maruo, “Micromolding of three-dimensional metal structures by electroless plating of photopolymerized resin,” Jpn. J. of Appl. Phys. 46 (4B), 2761-2763 (2007).
  45. K. Mukai, T. Yoshimura, S. Kitayama, S. Maruo, “Electroless and electrolytic plating of photopolymerized resin for use in the micro-molding of three-dimensional nickel structures,” Journal of photopolymer science and technology 20, no. 2, 285-290 (2007).
  46. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89, no. 14, Art No. 144101 (2006). 被引用回数208回@Google Scholar(2018.6)
  47. 井上宏之,芳賀誠士,丸尾昭二“2光子マイクロ光造形による光駆動マイクロギアの開発” 電気学会論文誌E, vol. 126-E, no.6, 216-221 (2006).
  48. 平塚洋二郎, 丸尾昭二 “光制御マイクロマニピュレーションシステムの開発,” 電気学会論文誌E, vol. 125-E, no. 12, 473-478 (2005).
  49. S. Maruo, K. Ikuta and H. Korogi,“Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” Journal of Microelectromechanical Systems 12, no. 5, 533-539 (2003).
  50. S. Maruo, K. Ikuta and H. Korogi,“Submicron manipulation tools driven by light in a liquid,” Applied Physics Letters 82,no. 1, 133-135 (2003). 被引用回数214回@Google Scholar(2018.6)
  51. S. Maruo and K. Ikuta, “Submicron stereolithography for the production of freely movable mechanisms by using single-photon polymerization,”Sensors and Actuators A 100, no. 1, 70-76 (2002). 被引用回数170回@Google Scholar(2018.6)
  52. 丸尾昭二,生田幸士,蜷川稔英,“マルチポリマー・マイクロ光造形法の開発(造形システムの試作と光導波路への応用),” 電気学会論文誌E, vol. 120-E, no. 7, 370-374 (2000).
  53. S. Maruo and K. Ikuta, “Three-dimensional microfabrication by use of single-photon-absorbed polymerization”, Applied Physics Letters 76,no. 19, 2656-2658 (2000). 被引用回数142回@Google Scholar(2018.6)
  54. S. Maruo and S. Kawata, “Two-Photon-Absorbed Near-Infrared Photopolymerization for Three-Dimensional Microfabrication,” Journal of Microelectromechanical Systems 7, no. 4, 411-415 (1998). 被引用回数275回@Google Scholar(2018.6)
  55. S. Maruo, O. Nakamura and S. Kawata, “Evanescent-wave holography by use of surface-plasmon resonance,” Applied Optics 36, no. 11, 2343-2346 (1997).
  56. S. Maruo, O. Nakamura and S. Kawata, “Three-dimensional microfabrication with two-photon absorbed photopolymerization,” Optics Letters 22, no.2, 132-134 (1997).  被引用回数1556回@Google Scholar(2018.6)